Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters








Language
Year range
1.
Braz. j. med. biol. res ; 53(7): e9207, 2020. tab, graf
Article in English | LILACS, ColecionaSUS | ID: biblio-1132533

ABSTRACT

The objective of this study was to investigate the relationship between PI3K/mTOR/RhoA signaling regulated cytoskeletal rearrangements and phagocytic capacity of macrophages. RAW264.7 macrophages were divided into four groups; blank control, negative control, PI3K-RNAi, and mTOR-RNAi. The cytoskeletal changes in the macrophages were observed. Furthermore, the phagocytic capacity of macrophages against Escherichia coli is reported as mean fluorescence intensity (MFI) and percent phagocytosis. Transfection yielded 82.1 and 81.5% gene-silencing efficiencies against PI3K and mTOR, respectively. The PI3K-RNAi group had lower mRNA and protein expression levels of PI3K, mTOR, and RhoA than the blank and negative control groups (Р<0.01). The mTOR-RNAi group had lower mRNA and protein levels of mTOR and RhoA than the blank and the negative control groups (Р<0.01). Macrophages in the PI3K-RNAi group exhibited stiff and inflexible morphology with short, disorganized filopodia and reduced number of stress fibers. Macrophages in the mTOR-RNAi group displayed pronounced cellular deformations with long, dense filopodia and an increased number of stress fibers. The PI3K-RNAi group exhibited lower MFI and percent phagocytosis than blank and negative control groups, whereas the mTOR-RNAi group displayed higher MFI and percent phagocytosis than the blank and negative controls (Р<0.01). Before and after transfection, the mRNA and protein levels of PI3K were both positively correlated with mTOR and RhoA (Р<0.05), but the mRNA and protein levels of mTOR were negatively correlated with those of RhoA (Р<0.05). Changes in the phagocytic capacity of macrophages were associated with cytoskeletal rearrangements and were regulated by the PI3K/mTOR/RhoA signaling pathway.


Subject(s)
Humans , Animals , Rats , Phagocytosis/physiology , Cytoskeleton/metabolism , Phosphatidylinositol 3-Kinases/metabolism , rhoA GTP-Binding Protein/metabolism , TOR Serine-Threonine Kinases/metabolism , Macrophages/metabolism , Transfection , Signal Transduction , Blotting, Western , Gene Silencing , RNA Interference , Real-Time Polymerase Chain Reaction , RAW 264.7 Cells , Genetic Vectors
2.
Braz. j. med. biol. res ; 48(5): 401-407, 05/2015. graf
Article in English | LILACS | ID: lil-744380

ABSTRACT

Recent studies have revealed that an intrinsic apoptotic signaling cascade is involved in vascular hyperpermeability and endothelial barrier dysfunction. Propofol (2,6-diisopropylphenol) has also been reported to inhibit apoptotic signaling by regulating mitochondrial permeability transition pore (mPTP) opening and caspase-3 activation. Here, we investigated whether propofol could alleviate burn serum-induced endothelial hyperpermeability through the inhibition of the intrinsic apoptotic signaling cascade. Rat lung microvascular endothelial cells (RLMVECs) were pretreated with propofol at various concentrations, followed by stimulation with burn serum, obtained from burn-injury rats. Monolayer permeability was determined by transendothelial electrical resistance. Mitochondrial release of cytochrome C was measured by ELISA. Bax and Bcl-2 expression and mitochondrial release of second mitochondrial-derived activator of caspases (smac) were detected by Western blotting. Caspase-3 activity was assessed by fluorometric assay; mitochondrial membrane potential (Δψm) was determined with JC-1 (a potential-sensitive fluorescent dye). Intracellular ATP content was assayed using a commercial kit, and reactive oxygen species (ROS) were measured by dichlorodihydrofluorescein diacetate (DCFH-DA). Burn serum significantly increased monolayer permeability (P<0.05), and this effect could be inhibited by propofol (P<0.05). Compared with a sham treatment group, intrinsic apoptotic signaling activation - indicated by Bax overexpression, Bcl-2 downregulation, Δψm reduction, decreased intracellular ATP level, increased cytosolic cytochrome C and smac, and caspase-3 activation - was observed in the vehicle group. Propofol not only attenuated these alterations (P<0.05 for all), but also significantly decreased burn-induced ROS production (P<0.05). Propofol attenuated burn-induced RLMVEC monolayer hyperpermeability by regulating the intrinsic apoptotic signaling pathway.


Subject(s)
Humans , Cross Infection/epidemiology , Cross Infection/etiology , Equipment Contamination/statistics & numerical data , Brazil/epidemiology , Hospitals/statistics & numerical data , Intensive Care Units , Sentinel Surveillance
3.
Braz. j. med. biol. res ; 46(9): 739-745, 19/set. 2013. tab, graf
Article in English | LILACS | ID: lil-686570

ABSTRACT

Liver cirrhosis is one of the most common diseases of Chinese patients. Herein, we report the high expression of a newly identified histone 3 lysine 4 demethylase, retinoblastoma binding protein 2 (RBP2), and its role in liver cirrhosis in humans. The siRNA knockdown of RBP2 expression in hepatic stellate cells (HSCs) reduced levels of α-smooth muscle actin (α-SMA) and vimentin and decreased the proliferation of HSCs; and overexpression of RBP2 increased α-SMA and vimentin levels. Treatment with transforming growth factor β (TGF-β) upregulated the expression of RBP2, α-SMA, and vimentin, and the siRNA knockdown of RBP2 expression attenuated TGF-β-mediated upregulation of α-SMA and vimentin expression and HSC proliferation. Furthermore, RBP2 was highly expressed in cirrhotic rat livers. Therefore, RBP2 may participate in the pathogenesis of liver cirrhosis by regulating the expression of α-SMA and vimentin. RBP2 may be a useful marker for the diagnosis and treatment of liver cirrhosis.


Subject(s)
Animals , Humans , Male , Actins/metabolism , Hepatic Stellate Cells/metabolism , Histone Demethylases/metabolism , Liver Cirrhosis/metabolism , /metabolism , Vimentin/metabolism , Blotting, Western , Cell Proliferation , Disease Models, Animal , Gene Expression , Gene Knockdown Techniques , Rats, Wistar , RNA, Small Interfering/metabolism , Transforming Growth Factor beta/metabolism
4.
Southeast Asian J Trop Med Public Health ; 1991 Jun; 22(2): 147-54
Article in English | IMSEAR | ID: sea-31393

ABSTRACT

Epidemiological survey of filariasis in Fujian Province, China showed that malayan filariasis, transmitted by Anopheles lesteri anthropophagus was mainly distributed in the northwest part and bancroftian filariasis with Culex quinquefasciatus as vector, in middle and south coastal regions. Both species of filariae showed typical nocturnal periodicity. Involvement of the extremities was not uncommon in malayan filariasis. In contrast, hydrocele was often present in bancroftian filariasis, in which limb impairment did not appear so frequently as in the former. Hetrazan treatment was administered to the microfilaremia cases identified during blood examination surveys, which were integrated with indoor residual spraying of insecticides in endemic areas of malayan filariasis when the vector mosquito was discovered and with mass treatment with hetrazan medicated salt in endemic areas of bancroftian filariasis. At the same time the habitation condition was improved. These factors facilitated the decrease in incidence. As a result malayan and bancroftian filariasis were proclaimed to have reached the criterion of basic elimination in 1985 and 1987 respectively. Surveillance was pursued thereafter and no signs of resurgence appeared.


Subject(s)
Animals , Brugia/physiology , China/epidemiology , Diethylcarbamazine/therapeutic use , Disease Reservoirs , Elephantiasis, Filarial/epidemiology , Female , Filarioidea/isolation & purification , Humans , Incidence , Insect Vectors/parasitology , Male , Microfilariae/physiology , Mosquito Control , Periodicity , Wuchereria bancrofti/physiology
SELECTION OF CITATIONS
SEARCH DETAIL